VMT & CO2 Emission Reduction Calculators CA MPO Future Mobility Research Program Task Order 3 #### **Need and Purpose** - Account for the CO2 emission reductions expected from TDM programs and emerging mobility strategies - Estimate emissions for strategies that are outside the domain of the regional travel demand model - Sensitive to growth forecast and transportation investments committed to as part of the Regional Transportation Plan ## Strategies Addressed with Off-Model Calculators in Previous Regional Plans | Strategy | SANDAG | мтс | SCAG | SACOG | |--------------------------------------|--------------|--------------|--------------|--------------| | | | | | | | Car Share | \checkmark | \checkmark | \checkmark | \checkmark | | Vanpool Programs | \checkmark | \checkmark | | \checkmark | | Carpool Programs | \checkmark | | | | | PEV Charging Stations | \checkmark | \checkmark | \checkmark | \checkmark | | Managed Lane Automation | \checkmark | | | | | Transit Managed Lane Automation | \checkmark | | | | | Neighborhood Electric Vehicles | | | \checkmark | | | Ride-sourcing | | | \checkmark | | | Commuter Benefits Ordinance | | \checkmark | | \checkmark | | Employer Shuttles | | \checkmark | | | | PEV Incentive and Vehicle Buyback | | \checkmark | | | | Feebate Program | | \checkmark | | | | Smart Driving | | \checkmark | | | | Targeted Transportation Alternatives | | \checkmark | | | | Trip Caps | | \checkmark | | | | Bike Share | | \checkmark | ✓ | | | Bicycle Infrastructure | | \checkmark | ✓ | | | Traffic Operations and Management | | | | ✓ | | Telecommute Work from home | | | | \checkmark | #### **SANDAG Off-Model CO2 Calculators** - Vanpool Program - Carshare - Bikeshare - Pooled Rides - Microtransit #### **Common Features** - Trip and VMT reductions based on local data (when available) - Travel behavior assumptions drawn from published research and aggregate statistics gleaned from mobility service operators - Reflect Regional Plan growth forecast assumptions - Reflect travel behavior outcomes of the Regional Plan (i.e., the model outputs) - Utilization forecast sensitive to travel time and trip cost - Geographic differentiation of sub-regional markets ## **Vanpool Program** | Strategy Element | Emission Reduction Approach & Principal Assumptions | |--------------------------------|--| | Current and future markets | Trip origins/destinations from active vanpools inventory Three main submarkets - federal military employers, federal non-military, non-federal Includes trips that start outside San Diego County (but takes credit for VMT within SDC only) | | Growth | Proportional to employment growth Incentivized by investments in regional managed lanes (travel time savings) Incentivized by lease cost subsidies | | Average VMT, vehicle occupancy | As reported by active vanpools | | Mode in lieu of vanpooling | Single-occupant vehicle | | Emission rates | ■ SANDAG ABM 14.0.0 | ## **Employment Growth Driver** | | | DESTINATION | | | | | | | | | | | | | |-----------------------|--------|-------------|---------|-------|-------|--------|-------|----|----|----|-----|----|---|-------| | ORIGIN | CTRL N | CITY S S | UB E SI | JB NO | CWEST | NCEAST | ECNTY | RV | OR | IM | SB | LA | | TOTAL | | CENTRAL | 2 | 23 | 1 | 0 | 9 | 3 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 41 | | NORTH CITY | 15 | 22 | 2 | 0 | 15 | 1 | . 3 | 3 | 1 | 0 | 2 | 0 | 0 | 61 | | SOUTH SUBURBAN | 13 | 46 | 0 | 2 | 8 | 2 | | 5 | 0 | 0 | 1 | 0 | 0 | 77 | | EAST SUBURBAN | 24 | 31 | 1 | 0 | 5 | 1 | . 16 | 6 | 0 | 1 | 3 | 0 | 0 | 82 | | NORTH COUNTY WEST | 5 | 7 | 0 | 0 | 2 | C |) (| 0 | 0 | 3 | 0 | 0 | 0 | 17 | | NORTH COUNTY EAST | 13 | 19 | 1 | 1 | 4 | 2 | | 2 | 0 | 1 | 0 | 0 | 0 | 43 | | EAST COUNTY | 2 | 1 | 0 | 0 | 0 | C |) 4 | 4 | 0 | 0 | 0 | 0 | 0 | 7 | | RIVERSIDE COUNTY | 130 | 107 | 10 | 4 | 61 | 12 | (| 0 | | | | | | 324 | | ORANGE COUNTY | 2 | 6 | 0 | 0 | 9 | C | (| 0 | | | | | | 17 | | IMPERIAL COUNTY | 17 | 1 | 0 | 0 | 0 | C | 10 | 0 | | | n/a | | | 28 | | SAN BERNARDINO COUNTY | 1 | 1 | 0 | 0 | 0 | C | (| 0 | | | | | | 2 | | LOS ANGELES COUNTY | 0 | 1 | 0 | 0 | 0 | C | (| 0 | | | | | | 1 | | TOTAL | 224 | 265 | 15 | 7 | 113 | 21 | 4: | 1 | 2 | 6 | 6 | 0 | 0 | 700 | Vanpools grow proportionally with employment in each MSA ### **Travel Time Savings Growth Driver** | | | | | | | DESTI | NATION | | | | | | | | |-----------------------|------|-------|-------|-------|--------|--------|--------|----|----|----|----|----|---|-------| | ORIGIN | CTRL | NCITY | S SUB | E SUB | NCWEST | NCEAST | ECNTY | RV | OR | IM | SB | LA | | TOTAL | | CENTRAL | 2 | 23 | 1 | 0 | 9 | 3 | 3 1 | L | 1 | 1 | 0 | 0 | 0 | 41 | | NORTH CITY | 15 | 22 | 2 | 0 | 15 | 1 | . 3 | 3 | 1 | 0 | 2 | 0 | 0 | 61 | | SOUTH SUBURBAN | 13 | 46 | 0 | 2 | 8 | 2 | ! 5 | 5 | 0 | 0 | 1 | 0 | 0 | 77 | | EAST SUBURBAN | 24 | 31 | 1 | 0 | 5 | 1 | . 16 | ō | 0 | 1 | 3 | 0 | 0 | 82 | | NORTH COUNTY WEST | 5 | 7 | 0 | 0 | 2 | (|) (|) | 0 | 3 | 0 | 0 | 0 | 17 | | NORTH COUNTY EAST | 13 | 19 | 1 | 1 | 4 | 2 | . 2 | 2 | 0 | 1 | 0 | 0 | 0 | 43 | | EAST COUNTY | 2 | 1 | 0 | 0 | 0 | (|) 4 | l | 0 | 0 | 0 | 0 | 0 | 7 | | RIVERSIDE COUNTY | 130 | 107 | 10 | 4 | 61 | 12 | . C |) | | | | | | 324 | | ORANGE COUNTY | | 6 | 0 | 0 | 9 | (|) (|) | | | | | | 17 | | IMPERIAL COUNTY | 17 | 1 | 0 | 0 | 0 | (| 10 |) | | n, | /a | | | 28 | | SAN BERNARDINO COUNTY | 1 | 1 | 0 | 0 | 0 | (|) (|) | | | | | | 2 | | LOS ANGELES COUNTY | 0 | 1 | 0 | 0 | 0 | (|) (|) | | | | | | 1 | | TOTAL | 224 | 265 | 15 | 7 | 113 | 21 | . 41 | L | 2 | 6 | 6 | 0 | 0 | 700 | - Vanpool demand increases with increasing travel time savings resulting from managed lane investments - Elasticity-based growth ## **Vanpool VMT and CO2 Inputs** | Variable | | Notes | |---|-----|--| | Baseline number of vans (2016) | | SANDAG Vanpool Program Data. Active vanpools as of June 30, 2018. Salesforce report. | | Military | 251 | | | Federal Non-Military | 109 | | | Non-Federal | 340 | | | Current vanpool operations | | | | Avg. round trip mileage, total | | SANDAG Vanpool Program Data. Active vanpools as of June 30, 2018. Salesforce report. | | Military | 125 | Includes distance traveled outside of San Diego County | | Federal Non-Military | 134 | | | Non-Federal | 104 | | | Avg. round trip mileage, San Diego County | | Vanpool distance traveled within San Diego County. | | Military | 108 | Out-of-county distance approximated based on home zipcode coordinates. | | Federal Non-Military | 122 | | | Non-Federal | 88 | | | Average van capacity (seats) | | SANDAG Vanpool Program Data. Active vanpools as of June 30, 2018. Salesforce report. | | Military | 7.5 | | | Federal Non-Military | 7.9 | | | Non-Federal | 8.1 | | | Average occupancy | | Average share of occupied seats, including the driver. Based on Vanpool Survey for | | Military | | National Transit Database Reporting, FY 2017/2018. The survey did not collect | | Federal Non-Military | | information about workers' industry, therefore using program average for all industries. | | Non-Federal | | | | All vanpools | 73% | | ## **CO2 Emission Reduction Reporting** | Variable | 2016 | 2020 | 2025 | 2035 | 2050 | | |--|-----------|-----------|-----------|-----------|-----------|--| | Total daily vehicle trip reduction | 6,605 | 7,953 | 8,230 | 9,200 | 10,255 | = total vans * average occupants (exc. driver) * 2 trips per day | | Total daily VMT reduction | 382,084 | 461,096 | 476,411 | 532,184 | 592,994 | = total vans * average occupants (exc. driver) * round trip mileage, trip total | | VMT reduced in San Diego County | 330,534 | 398,889 | 412,133 | 460,584 | 513,553 | = total vans * average occupants (exc. driver) * round trip mileage within San Diego | | GHG reduction due to cold starts (short tons) | 0.5 | 0.6 | 0.6 | 0.7 | 0.7 | = vehicle trip reduction * trip starts GHG emission factor | | GHG reduction due to VMT (short tons) | 141.1 | 164.8 | 168.4 | 185.0 | 205.6 | = VMT reduction * running GHG emission factor | | Total GHG reduction (short tons) | 141.6 | 165.4 | 169.0 | 185.7 | 206.4 | = trip + VMT GHG emission reduction | | Total population | 3,316,192 | 3,418,965 | 3,540,407 | 3,747,159 | 4,004,674 | | | Per capita GHG reduction (lbs/person) | -0.085 | -0.097 | -0.095 | -0.099 | -0.103 | = GHG emissions (in tons) * 2000 lbs per ton / population | | Per capita GHG reduction, relative to baseline | -0.43% | -0.50% | -0.49% | -0.53% | -0.56% | = percent change in per capita GHG reduction | ### **Bikeshare** | Quantity | Overall Approach | Inputs and Source | |---------------------------|---|--| | Market / Market
Growth | Estimate utilization
from experience of
bikeshare systems in
operation in U.S.
cities | Coverage areaPopulation in coverage area | | Supply | Number of bikes per
1,000 persons | Bikeshare Planning Guide | | Supply | Estimate increase in
bikeshare trips due
to new bike lane
miles | Approximately 100 bike trips induced for
each additional bike lane mile (Xu and
Chow, 2018) | | Program VMT | VMT reduction estimated based on substitution rate of auto trips, and average bikeshare trip length | Inputs obtained from reported data for
various U.S. bikeshare systems: Differentiate utilization of traditional bikes
and e-bikes | ## Bikeshare Coverage ## **Bikeshare Trip Demand** | | | Bikeshare Strategy Inputs & Assumptions Year 2035 | | | | | | | | | | | | |-------------------|---|---|--|-----------------------------|---|--------------------|--|--------------------------|---|---|---------------------------------------|---------------------------------------|--| | | | | Propo | sed Bikeshare | Areas | | | Bike Infr | astructure Inve | estments | e-Bike Fleet | | | | MSA | Number of
MGRAs in
bikeshare
coverage area | Total
population in
MSA
(thousands) | Population in
bikeshare
coverage area
(thousands) | Bikes / 1,000
population | Estimated
bikeshare fleet
size | Daily trips / bike | Estimated daily bikeshare trips | Bikeways
(miles) | Additional
bikeway miles
with respect to
base year | Additional
bikeshare trips
per bikeway
mile [13] | Number of e-
bikes in
bikeshare | Percent of
e-bikes in
bikeshare | | | | Coverage is
defined in
Model Data | | | | Population *
(Bikes/1000
persons) | | Daily trips per
bike * daily
bike supply | Input lane
miles here | | 102 bikeshare
trips per new
bikelane-mile | Bikeshare fleet
* % e-bikes | Input e-bike
supply here | | | Central | 4,368 | 836 | 828 | 10 | 8,278.40 | 2.3 | 19,129 | 215 | 51 | 5,215 | 4,139 | 50% | | | North City | 1,552 | 893 | 277 | 10 | 2,771 | 2.3 | 6,403 | 460 | 25 | 2,574 | 1,385 | 50% | | | South Suburban | 966 | 509 | 385 | 5 | 1,923 | 1.2 | 2,222 | 186 | 8 | 791 | 962 | 50% | | | East Suburban | 839 | 518 | 156 | 5 | 779 | 1.2 | 900 | 185 | 9 | 969 | 390 | 50% | | | North County West | 2,601 | 437 | 349 | 5 | 1,746 | 1.2 | 2,017 | 336 | 14 | 1,451 | 873 | 50% | | | North County East | 415 | 511 | 96 | 5 | 478 | 1.2 | 553 | 183 | 8 | 788 | 239 | 50% | | | East County | - | 43 | - | 0 | - | - | - | 38 | - | - | - | 0% | | | Total | 10,741 | 3,747 | 2,090 | | 15,976 | | 31,224 | 1,603 | 116 | 11,788 | 7,988 | | | ## **Bikeshare VMT and CO2 Inputs** | Variable | 2016 | 2020 | 2025 | 2035 | Notes | |--|------------|------------|------------|-----------|---| | Percent of electric-assisted bikes and scooters | 50% | 50% | 50% | 50% | Asserted by SANDAG staff, partly based on e-bike data provided by Lime, and expected trend towards more electric assisted devices in the future. | | Car substitution rate (regular bikes) | 20% | 20% | 20% | 20% | Average car substitution rate from bikeshare systems reporting data. See data synthesis in Bikeshare Utilization Data tab. | | Average trip distance (regular bikes) | 2.0 | 2.0 | 2.0 | 2.0 | Model-estimated average trip distance of bike trips. Average bike trip distance in San Diego during ofo's first month of operations is approx. 2 miles (reported to SANDAG). Average trip distance for station-based bikeshare deployed for transit integration varies in the 1.3 to 2.4 mile range (TCRP Synthesis # 132). | | Car substitution rate (e-bikes) Average trip distance (e-bikes) | 37%
4.0 | 37%
4.0 | 37%
4.0 | 37% | Data from European systems shows that average trip distance of e-bike is more than double the trip distance of regular bike users. North American e-bike users report car substitution rates of 37% for non-commute trips and 64% for commute trips. Average trip distance of trips that would have been made by car is 9.3 miles. | | Projected daily bikeshare trips (regular bikes) | 0 | 13,998 | 15,757 | 21 506 | Calculated in Bikeshare Demand tab, based on bikeshare coverage, population and utilization | | Projected daily bikeshare trips (ebikes) | 0 | 13,281 | 15,754 | | = total bikeshare trips * proportion of e-bikes in bikeshare fleet | | Regional population | 3,316,192 | 3,418,965 | 3,540,407 | 3,747,159 | From Model Data tab (for per capita calculations) | ### **Carshare** | Quantity | Overall Approach | Inputs and Source | |---------------------------|--|---| | Market / Market
Growth | Estimate future carshare users based on population living in areas dense enough to support carsharing. Markets: Employment Centers Colleges and | Coverage areas Driving-age population College enrollment and employment Participation rates (2% in urban areas and 0.5% in suburban areas based on data from the Puget Sound Region (Petersen et al, 2016). Urban and suburban density thresholds | | Program VMT | VMT reduction
based on case study
data | 7 miles per day, traditional carshare
(Cervero et al, 2007) 1.1 miles per day, one-way (Martin and
Shaheen, 2016) | ## **Carshare Membership** | | | Strategy Inputs Year 2035 | | | | | | | | | | | | |-------------------|--------------------|---------------------------|---------------------------------|------------------------------------|---|-------------------|--------------------|--|--|--|--|--|--| | | General Population | | | | | | | | | | | | | | | MGRAs in coverage | Eligible
Population | Eligible
urban
population | Eligible
suburban
population | Percent of
urban
population
expected to
become
members | become
members | Estimated carshare | | | | | | | | MSA | area | (thousands) | (thousands) | (thousands) | [4] | [5] | membership | | | | | | | | Central | 834 | 162 | 141 | 21 | 2.0% | 0.50% | 2,921 | | | | | | | | North City | 263 | 37 | 32 | 5 | 2.0% | 0.50% | 664 | | | | | | | | South Suburban | 1 | - | - | - | 2.0% | 0.50% | - | | | | | | | | East Suburban | 3 | - | - | - | 2.0% | 0.50% | - | | | | | | | | North County West | 86 | 22 | 1 | 21 | 2.0% | 0.50% | 118 | | | | | | | | North County East | 5 | 2 | 2 | - | 2.0% | 0.50% | 35 | | | | | | | | East County | - | - | - | - | 2.0% | 0.50% | - | | | | | | | | Total | 1,192 | 222 | 175 | 47 | | | 3,738 | | | | | | | ## **Carshare Membership** | | Strategy Inputs Year 2035 | | | | | | | | | | | | | |-------------------|---|---------------------------------------|--|-------------------------------|---|---------------------------------------|--|-------------------------------------|---|---------------|------|-------------------------------------|--| | | | С | olleges - Sta | ff | | Colleges - | Students | | Military Bases | | | | | | MSA | MGRAs in
college
coverage
area | College /
University
Employment | Percent of
employees
expected to
become
members
[4] | Estimated carshare membership | MGRAs in
college
coverage
area | College /
University
Enrollment | Percent of students expected to become members [4] | Estimated
carshare
membership | MGRAs in
military base
coverage
area | Military Base | | Estimated
carshare
membership | | | Central | 1 | 351 | 2.0% | | 1 | 24,381 | 2.0% | · | 5 | 32,181 | 2.0% | | | | North City | 3 | 12,949 | 2.0% | | 3 | 19,141 | 2.0% | | 5 | 9,717 | 2.0% | | | | South Suburban | - | ,
- | 2.0% | - | - | - | 2.0% | - | - | - | 2.0% | - | | | East Suburban | - | - | 2.0% | - | - | - | 2.0% | - | - | - | 2.0% | - | | | North County West | - | - | 2.0% | - | - | - | 2.0% | - | 2 | 21,510 | 2.0% | 430 | | | North County East | 1 | 5,393 | 2.0% | 108 | 1 | 10,607 | 2.0% | 212 | - | - | 2.0% | - | | | East County | - | _ | 2.0% | - | - | - | 2.0% | - | - | - | 2.0% | - | | | Total | 5 | 18,693 | | 374 | 5 | 54,129 | | 1,083 | 12 | 63,408 | | 1,268 | | ### **Pooled Rides** | Quantity | Overall Approach | Inputs and Source | |---------------------------|---|---| | Market / Market
Growth | Mode shift model
applied to drive-
alone trips Model calibrated to
aggregate mode
shares reported for
San Diego County | SANDAG ABM data Drive alone trips predicted in each future year auto ownership category 2016-2017 San Diego Regional Transportation Study 2018 Commute Behavior Survey | | Supply | Elasticity-based change in demand due to ML travel time savings Average trip cost | SANDAG ABM data Average drive alone and carpool travel times Average auto operating cost Internal Revenue Service 2016 mileage reimbursement rate | | Program VMT | Length of trip that
shifts from drive-
alone to pooled ride | SANDAG ABM data Average drive-alone trip distance,
work and non-work trips Average vehicle occupancy | #### **Microtransit** - Transit that relies on real-time ride-hailing, tracking and app-based payment - e.g., Free Ride Everywhere Downtown (FRED) - Microtransit service envisioned for San Diego County - Expansion of FRED, provided with Neighborhood Electric Vehicles - Commuter-based service, in areas not well served by fixed-route transit, and serving trips to regional employment centers ## NEV Shuttle Proposed Coverage ### **Microtransit** | Quantity | Overall Approach | Inputs and Source | |---------------------------|--|--| | Market / Market
Growth | Mode shift model applied to drivealone trips Two types of service, within well-defined coverage areas Non-competing with fixed-route transit | Coverage areas SANDAG ABM data Drive alone trips within the coverage areas Fixed-route transit level of service | | Supply | For NEV shuttle, fixed mode shares For CB shuttles, aggregate mode shift model | FRED mode shareProjected commuter-shuttle travel time and trip cost | | Program VMT | Length of trips that
shift to microtransit | SANDAG ABM data | #### **Microtransit Mode Shift Model** - Applied to drive-alone trips predicted by the regional travel demand model (SANDAG ABM) - Filters trips that have good fixed-route transit service - Microtransit projected to be priced competitively relative to other transit and pooled options - Travel time projected to be similar to suburban express buses - All else equal, assumed to be less preferable than fixedroute transit #### **NEV Shuttle Demand** | Strategy Inputs Year 2035 | | | | | | | | | | |---------------------------|----------------------------------|------------------------------|---|--|---|---|-------------|-------------------------------------|---------------| | | NEV Shuttle Service Non-Military | | | | | | | | | | MSA | MSA avea (acres) | NEV shuttle
service areas | Proportion of
MSA that has
NEV shuttle
service | Total daily
person trips
less than 2
miles long in
coverage area | Daily auto trips
less than 2
miles long in
coverage area | NEV shuttle
share of all
person trips | NEV shuttle | NEV shuttle
auto
substitution | Replaced auto | | | MSA area (acres) | (acres) | | [3] | [3] | [1],[2] | daily trips | rate | trips | | Central | 62,324 | 15,206 | 24.4% | • | 144,778 | 0.45% | 1,638 | 33% | | | North City | 184,829 | 10,108 | 5.5% | 186,348 | 104,324 | 0.45% | 839 | 33% | 276.73 | | South Suburban | 68,130 | 8,590 | 12.6% | 98,795 | 53,099 | 0.45% | 445 | 33% | 146.71 | | East Suburban | 363,195 | 804 | 0.2% | 5,822 | 2,727 | 0.45% | 26 | 33% | 8.65 | | North County West | 222,260 | 7,893 | 3.6% | 55,810 | 30,539 | 0.45% | 251 | 33% | 82.88 | | North County East | 347,901 | 1,208 | 0.3% | 8,951 | 5,084 | 0.45% | 40 | 33% | 13.29 | | East County | 1,478,318 | - | 0.0% | - | - | 0.45% | - | 33% | - | | Total | 2,726,957 | 43,810 | 1.6% | 719,731 | 340,551 | | 3,239 | | 1,069 | #### **Commuter-Based Shuttle Demand** | | | | Strategy Inpu | uts 2020 | | | | | |--|---------------------------------|--|--|---|--|-------------------------|-------------------------------------|-------------------------| | Employment Center | Total jobs in employment center | Home to work person trips to employment center | Drive alone
work trips to
employment
center | Drive alone
work trips to
employment
center, from
areas with no
or poor transit
service | Unsubsidized commuter
shuttle service | | Subsidized commuter shuttle service | | | | | | | | Home to work trips | Home to work mode share | Home to work trips | Home to work mode share | | Downtown San Diego | 89,966 | 59,600 | 38,378 | 25,298 | 1,141 | 5% | 1,740 | 7% | | Sorrento Valley | 82,117 | 51,604 | 44,794 | 34,821 | 1,961 | 6% | 2,879 | 8% | | Kearny Mesa | 129,430 | 74,801 | 63,013 | 49,997 | 2,783 | 6% | 4,104 | 8% | | UTC | 87,196 | 50,291 | 41,862 | 28,380 | 1,387 | 5% | 2,106 | 7% | | East CarsIbad | 81,155 | 55,359 | 46,465 | 43,067 | 2,206 | 5% | 3,228 | 7% | | Mission Valley | 46,409 | 29,642 | 23,663 | 18,104 | 911 | 5% | 1,349 | 7% | | Camp Pendleton | 45,437 | 19,856 | 17,069 | 14,234 | 714 | 5% | 1,040 | 7% | | Naval Base Coronado, Naval
Amphibious Base Coronado | 17,436 | 10,110 | 7,274 | 5,291 | 229 | 4% | 343 | 6% | | MCAS Miramar | 26,937 | 14,950 | 11,028 | 9,306 | 416 | 4% | 575 | 6% | | Naval Base San Diego | 8,271 | 4,805 | 4,202 | 4,158 | 139 | 3% | 247 | 6% | | Port of San Diego/ South of
Downtown | 9,585 | 5,766 | 4,423 | 3,063 | 160 | 5% | 241 | 8% | | Total | 623,939 | 376,784 | 302,171 | 235,719 | 12,047 | 5% | 17,852 | 8% | #### **Some Parting Thoughts** - Many assumptions can (and should) be updated when local data become available ... - ... and/or as research findings get updated - All assumptions are exposed and documented - Coverage areas, densities and similar inputs can be customized by region and RTP investment assumptions - A few parameters are region-specific (e.g., average value of time, aggregate emission rates) - Can be adapted to use outputs from a trip-based model #### **Contacts** #### **Rosella Picado** **Assistant Vicepresident, WSP** Rosella.Picado@wsp.com #### **Marco Anderson** **Program Manager, SCAG** Anderson@scag.ca.gov #### **Marisa Mangan** **Associate Regional Planner, SANDAG** Marisa.Mangan@sandag.org The travel demand, VMT, and CO2 emission forecasts shown on this presentation are meant for illustration only; they do not reflect official forecasts of the San Diego Association of Governments.